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We pose the problem of constructing the optimal control for a process described by a non-
linear equation of the same form as the heat conduction equation. On the basis of the theory
developed by Ovsiannikov [1] we find transformation groups which enable us to reduce the
system of partial differential equations of the problem to a system of ordinary differential
equations, Several types of boundary conditions formulated to conform to the resulting
transformations are considered.

1. Formulation of the problem. Let the controlled process be described by the
equation in dimensionless variables
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where ¢ (¢, x) is the required distribution, f (9) is some nonlinear function whose form will
be determined later, & is a constant, and u (¢, x) is the distributed control

te [0,7], = = [0,]

An equation of the form of (1.1) describes heating processes, processes in chemical
reactors, etc.
Let us find the control u (¢, x) which minimizes the fanctional
T 1
Ty = S S Qudzdt (1.2)
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where Q, T, and [ are known positive constants. The boundary conditions for Eq. (1.1)
will be formulated below in conformance to the resulting transformations. We shall then
attempt to find transformation groups which will enable us to find group-invariant soln-
tions of unit rank.

It is convenient to represent Eq. (1.1) in the form of the system
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In order to solve the variational problem we make use of the Lagrange formalism which
yields the necessary conditions for the extremum of (1.2) in the form of Ostrogradskii equa-
tions,
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From Egs. (1.5) we find that the Lagrange multipliers are given by
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Eq. (1.4) becomes
ou %u
= . —au= 1.
2 i@ —au=0 (1.6)
The equations of the variational problem can now be written as
(S) Py =wx — @ +ou, Px=w [/ (P]? (1.7
w=au—f(Q)vx, Ug=0 (1.8)

2. Construction of the basic group G. A system of equations (S) includes
the four required fonctions @, u, w, v of the two independent variables x and ¢. The total-
ity of the dependent and independent quantities can be regarded as the collection of co-
ordinates of a point in the space E,.

The transformation group G is defined by a Lie algebra of infinitesimal operators,

where & Ex, Eo, By, §w, E, are the coordinates of the operator ¥ which are functions
of the coordinates of the space E,.

We now introduce the space E;, which is an extension of the space E¢. A point in
E,, is defined by the coordinates

tv I, q)1 u, w, v, cP[y (pxr Uyy Uy, Wy, tx! Zy, Ux

Next, we introduce the gronp G*, which is the first extension of the transformation
group G. The group G* is isomorphic to G. The operator of the group G* is given by
Expression (2.2)
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The group G is basic to (S) if and only if the invariance condmons [
Y*[¥]=0 (2.3)
where ¥ is a manifold defined by (5), are fulfilled in E“, Conditions (2.3) then become
oy e+ 0B, —aB =0, [(@)E, + % Pk, —Ep=0

Bug+ 1 (9) By + % veB, — B, =0, £, —E,=0 (2.4)

The expressions for the coordinates of the extended operator in terms of the coordinates

of the operator Y and the coordinates of the space E,, can be obtained as described in [1];
for example,

Bop= Dt (B) — @Dy (E:) - %Dt (&x)» Eq, = Dz (8,) — ®1Dx (&) — 9xDx (82)
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The expressions for the remaining coordinates can be written out in the same way.
The invariance conditions enable us to obtain the system of defining equations of the

Lie algebra. The unknown functions in this system are the coordinates of the operator ¥;
the independent variables are ¢, x, @, u, w, v.
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Stady of the defining equations for the coordinates of infinitesimal operator (2.1) yields the
following relations:
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Here and below the prime denotes differentiation with respect to @. Moreover,

g! = gt (t)v gx == gx (t) z)’ §¢ = g'@ (t, z, (P)
Eu = gu (ty z, u)a §w = gw (ty z, @, w)# gv = gv (t, x, u, 1))

We can now use the resulting relations {2.5)(2.9) to investigate the group properties
of system (5) for certain types of linear functions f (¢) and boundary conditions.
A, Let us consider the case of determining the basic group for an arbitrary function
f (®). Since £, does not depend on ¢ and w, (2.7) implies the relations
g, 9k, oE, o, &%

dt =31 = 9z = 9z = 928 =0

Eq. (2.9) is satisfied identically. Here the coordinates & and £, of the operator are
the defining constants, and £¢ = £y = §, = §, = 0. Hence, the basis of the Lie
algebra of the basic group of system (S) consists of the operators

' 9
Yi=73; Yy= 752

The representatives of the classes of similar subalgebras of unit order are then of the
form [1]

<Yy, (Y14 KYyp {2.10)

where X is any real number. These classes are associated with the subgroups H, and
H, of the basic group G.

B. The transformation group G can be extended by means of a special form of the
fanction f (). It is clear from (2.7) that £, does not depend on w and ¥ for

[ (@) = Ce*™ or [(p) = C,e™ (2.11)
where C,, Cy, m and n are arbitrary conatants, and

R
TR T
In this case the coordinates of the infinitesimal operator Y are
= Bior Bx= Eio + a2, Eo = m 40, Eu = miEau (2.12)
B (m + OmEw, =1 —mm T Ey?



Group-invariant properties of a nonlinear optimally controlled process 535

The defining constants are £r0r Sxor Exi-
The representatives of the classes of similar subalgebras of unit order are now

Yo, <Y1+ KTy, <KYy+ Yy
(7] 7]
Y1 =0t Y= Br

¢ 9 u 9 m4-1 d i—m 3
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Here K, and K, are arbitrary real numbers.
These classes are associated with the subgroups H,’, H,, Hs of the basic group G.

3. Group-invariant solutions of system (8). A complete collection of
functionally independent invariants I; (j = 1, 2, ..., 5) can be found for each subgroup.
1f the manifold defined by the equations § =@ (z, 8}, u = u (2, 1), w = w (z, 1),
v = v(z, t), is nonsingular, i.e. if the rank of the matrix of the coordinates of the in-
finitesimal operators at the points of the manifold is not smaller then the total rank of this
matrix, then the manifold is defined by the system of equations

OB (Iy, Loy ..} =0 (B=1, ..., 4)
Taking any invariant I; as our new independent variable, we can find the relations
I (I5) (k == j). Solving th‘se for @, u, w, v and substituting these into {S), we obtain a

system of ordinary differential equations which we denote by S/ Hi(i=1, 2, 3).
Let us now consider the group-invariant solutions for Cases 4 and B. We have shown

that each transformation subgroup H; must be matched by boundary conditions of a certain
type which cannot be formulated until the transformation has been determined.
A®, The complets collection of functionally independent invariants for a representative

of the class (Y, is of the form
L=t I=¢(), Is=u()

The system S/H, can be written as

d12 dla
717:(!(13--—13), -&r:als 3.1)

The resulting transformation subgroup can be used if the boundary conditions fo. the
initial problem are specified (for example) in the form

@ (z,0 = Po, u(z, 0) = Ug, 9z, T) = Py

Here 9o, Up, ¢, are constants, The equation ¢ (z, T} = 9, serves to define the

instant T of termination of the controlled process.
The subgroup H, with the operator ¥, + KY, is associated with the invariants

ILi=z—kt, Iy =@z, 8), Jg==u(z, ), [; = wizr, t), Iy=v(a,t)
The system S/H, is of the form

dl, dly dly
kzr=a1s—ala—- a5 f) g =1 (32)
dla dIs

kd] —-f(IZ) d[ —aly, E=I5
By eliminating I, and I; we reduce system (3.2) to

a2y i dIy (df (I2) L. CR dly
Sr=raglee-w—g (FE )] v (eam ) 09

In this case the boundary conditions can be formulated as
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dl o dly du
1> (0) = ¢ (0, 0), 13(0) = u (0, 0), Al |1=o= 0% |x=0’  dI; |fimo = 9% |x—o
t=0 t=0
We can determine the instant of termination of the process from the condition
?©, 7)) =9,

B°. This variant differs from A® in that it involves the operator

a 0 ¢ 0 v 0 m-+41 0 1—m 0
kYitYs=hk grteg t g T moaut m Yaw T Tm 2% G4

The collection of functionally independent invariants is given in this case by the
relations

—t

—t —t
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The system S/H, can be reduced to

o dI
mbkzcyls m71_1§- = Iy (1 4 amks) — amkslg — mli, dI: - 2m2kzcllgm_1 ( e >’

dl
d dI
mge [;™ 113 =I5 (amks — 1) + "‘"TI:
dly dI
I4=01122m dIl » 5 ='d_1‘ls" (35)

Among the boundary conditions suitable in this case are those of the (3.4) type.

The optimal control in the above cases is constructed after the appropriate invariants
have been determined.

Because the coordinates &, &, Eu, &, do not depend on the ancillary variables w
and v, we can write out a ‘truncated’ operator which refers to transformations in the space
t, z, u, . We then consider the equations of the variational problem in the form (1.1),
(1.6).

It was not our intention in the present paper to analyze the relationship between the
boundary conditions of the problem with the transformation groups. We have merely established
that each transformation group must be matched with boundary conditions of a certain type.
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